Low Capacitance Bidirectional Single Line TVS Protection Diode UM5084 DFN2 1.0×0.6 #### **General Description** The UM5084 TVS protection diode is designed to replace multilayer varistors (MLVs) in portable applications such as cell phones, notebook computers, and PDA's. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, lower operating voltage, lower clamping voltage and no device degradation when compared to MLVs. The UM5084 TVS protection diode protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events. The UM5084 is available in DFN2 1.0×0.6 (compatible with SOD923/SOD882/CSP 1.0×0.6) package with working voltages of 12 volt. It gives designer the flexibility to protect bidirectional single line in applications where arrays are not practical. Additionally, it may be "sprinkled" around the board in applications where board space is at a premium. It may be used to meet the ESD immunity requirements of IEC 61000-4-2, ±15kV air, ±8kV contact discharge. #### **Applications** - Cell Phone Handsets and Accessories - Personal Digital Assistants (PDA's) - Notebooks, Desktops and Servers - Portable Instrumentation - Cordless Phones - Smart Card - Digital Cameras - MP3 Players #### **Features** - Transient Protection for Data Lines to IEC 61000-4-2 (ESD): ±15kV (Air), ±8kV (Contact) - Small Package for Use in Portable Electronics - Suitable Replacement for MLV's in ESD Protection Applications - Bidirectional TVS Protection - Stand-off Voltages: 12V - Low Leakage Current - Low Diode Capacitance - Small Body Outline Dimensions: 1.0mm×0.6mm #### **Pin Configurations** # **Top View** # **Ordering Information** | Part
Number | Working
Voltage | Packaging Type | Channel | Marking
Code | Shipping Qty | |----------------|--------------------|----------------|---------|-----------------|-------------------------------| | UM5084 | 12.0V | DFN2 1.0×0.6 | 1 | E5 | 5000pcs/7 Inch
Tape & Reel | # **Absolute Maximum Ratings** | Rating | Symbol | Value | Unit | |---|------------|---------------|-------| | Peak Pulse Power (t _P =8/20μs) | P_{PK} | 140 | Watts | | Maximum Peak Pulse Current (t _P =8/20μs) | I_{PP} | 5.9 | Amps | | Lead Soldering Temperature | $T_{ m L}$ | 260 (10 sec.) | °C | | Operating Temperature | T_{J} | -55 to +125 | °C | | Storage Temperature | T_{STG} | -55 to +150 | °C | # **Symbol Definition** | Parameter | Symbol | |--|------------------| | Maximum Reverse Peak Pulse Current | I_{PP} | | Clamping Voltage @ I _{pp} | $V_{\rm C}$ | | Working Peak Reverse Voltage | $ m V_{RWM}$ | | Maximum Reverse Leakage Current @ V _{RWM} | I_R | | Breakdown Voltage @ I _T | $ m V_{BR}$ | | Test Current | I_{T} | | Peak Power Dissipation | P_{PK} | | Max. Capacitance @ V _R =0V, f=1MHz | C _J | #### **Electrical Characteristics** (T=25°C, Device for 12.0V Reverse Stand-off Voltage) | Parameter | Symbol | Conditions | Min | Тур | Max | Unit | |-------------------------------------|-------------|-------------------------------|------|-----|------|------| | Reverse Stand-Off
Voltage | V_{RWM} | | | | 12 | V | | Reverse Breakdown
Voltage | V_{BR} | I _T =1mA | 16.7 | | 18.7 | V | | Reverse Leakage Current | I_R | V _{RWM} =12V, T=25°C | | | 0.5 | μΑ | | Clamping Voltage | $V_{\rm C}$ | $I_{PP}=5.9A, t_P=8/20\mu s$ | | | 23.7 | V | | Junction Capacitance C _J | | $V_R=0V$, $f=1MHz$ | | 10 | 15 | pF | #### **Applications Information** #### **Device Connection Options** UM5084 ESD protection diode is designed to protect one bidirectional data, I/O or power supply line from the damage caused by ESD and surge pulses. The device is bidirectional and may be used on lines where the signal polarity is above ground and below ground. #### **Circuit Board Layout Recommendations for Suppression of ESD** Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended: - 1. Place the TVS near the input terminals or connectors to restrict transient coupling. - 2. Minimize the path length between the TVS and the protected line. - 3. Minimize all conductive loops including power and ground loops. - 4. The ESD transient return path to ground should be kept as short as possible. - 5. Never run critical signals near board edges. - 6. Use ground planes whenever possible. For multilayer printed-circuit boards, use ground vias. - 7. Keep parallel signal paths to a minimum. - 8. Avoid running protection conductors in parallel with unprotected conductor. - 9. Avoid using shared transient return paths to a common ground point. # **Package Information** # **UM5084 DFN2 1.0×0.6** # **Outline Drawing** | DIMENSIONS | | | | | | | | |-------------|--|---|---|---|---|--|--| | MILLIMETERS | | | INCHES | | | | | | Min | Тур | Max | Min | Тур | Max | | | | 0.40 | 1 | 0.53 | 0.016 | - | 0.021 | | | | 0.00 | - | 0.05 | 0.000 | - | 0.002 | | | | 0.45 | 0.50 | 0.55 | 0.018 | 0.020 | 0.022 | | | | 0.95 | 1.00 | 1.075 | 0.037 | 0.039 | 0.042 | | | | 0.55 | 0.60 | 0.675 | 0.022 | 0.024 | 0.027 | | | | 0.65TYP | | | 0.026TYP | | | | | | 0.20 | 0.25 | 0.30 | 0.008 | 0.010 | 0.012 | | | | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 | | | | 0.05 | 0.10 | 0.15 | 0.002 | 0.004 | 0.006 | | | | | 0.40
0.00
0.45
0.95
0.55
0.20
0.00 | MILLIME Min Typ 0.40 - 0.00 - 0.45 0.50 0.95 1.00 0.55 0.60 0.65TY 0.25 0.00 0.05 | MILLIMETERS Min Typ Max 0.40 - 0.53 0.00 - 0.05 0.45 0.50 0.55 0.95 1.00 1.075 0.55 0.60 0.675 0.65TYP 0.20 0.25 0.30 0.00 0.05 0.10 0.05 0.10 0.15 | Min Typ Max Min 0.40 - 0.53 0.016 0.00 - 0.05 0.000 0.45 0.50 0.55 0.018 0.95 1.00 1.075 0.037 0.55 0.60 0.675 0.022 0.65TYP 0.20 0.25 0.30 0.008 0.00 0.05 0.10 0.000 0.05 0.10 0.15 0.002 | Min Typ Max Min Typ 0.40 - 0.53 0.016 - 0.00 - 0.05 0.000 - 0.45 0.50 0.55 0.018 0.020 0.95 1.00 1.075 0.037 0.039 0.55 0.60 0.675 0.022 0.024 0.65TYP 0.026TYP 0.026TYP 0.20 0.25 0.30 0.008 0.010 0.00 0.05 0.10 0.000 0.002 0.05 0.10 0.15 0.002 0.004 | | | Note: R is optional. ## **Land Pattern** # NOTES: - 1. Compound dimension: 1.00×0.60; - 2. Unit: mm; - 3. General tolerance ± 0.05 mm unless otherwise specified; - 4. The layout is just for reference. # **Tape and Reel Orientation** #### **GREEN COMPLIANCE** Union Semiconductor is committed to environmental excellence in all aspects of its operations including meeting or exceeding regulatory requirements with respect to the use of hazardous substances. Numerous successful programs have been implemented to reduce the use of hazardous substances and/or emissions. All Union components are compliant with the RoHS directive, which helps to support customers in their compliance with environmental directives. For more green compliance information, please visit: http://www.union-ic.com/index.aspx?cat code=RoHSDeclaration #### **IMPORTANT NOTICE** The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible. Union Semiconductor, Inc Add: Unit 606, No.570 Shengxia Road, Shanghai 201210 Tel: 021-51093966 Fax: 021-51026018 Website: www.union-ic.com